Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) are the most widely used interchangeable words creating confusion among many people globally.
Although, these three terminologies are typically used interchangeably, but they all are different from each other especially in terms of their applications, capabilities, and results.
Understanding the difference between AI, ML, and deep learning is important to utilize the precise applications of these jargons and take the right decision while dealing with AI, ML, or DL related projects.
Before we start, I would like to show you few images (see below) that will give an overview, how AI, ML, and DL are different from each other or how these three terminologies are related to each other.
Machine learning is already being used in various areas, sectors, and systems but deep learning is more indispensable for the healthcare sector where the accuracy of results can save the lives of humans. Though, countless opportunities lie for machine learning and deep learning to make the machines more intelligent and contribute to developing a feasible AI model.
In the healthcare and medical field, AI can diagnosis disease using the Medical Imaging Data that are fed into deep learning algorithms to learn the tumors or other life-threatening diseases. Now deep learning is giving excellent results, even performing better than Radiologists .
Finally, in all types of AI, ML or DL models working on computer vision-based technology needs a huge amount of training data for object detection. These datasets help them to learn the patterns and utilize similar information for predicting the results when used in real-life.
3 Comments
Financial App Development Company
Machine Learning Development Company
Android App Development Company
Digital Marketing Company
Fintech App Development Company
Big Data Service Provider
Advanced Data Analytics Solutions
Data Modernization Services
AI & ML Service Provider